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A B S T R A C T   

Soil microbes play key roles in driving and regulating nutrient cycling in terrestrial ecosystems. However, a lack 
of global-scale information regarding the distribution of soil microbial biomass carbon (SMB C), nitrogen (SMB 
N), and phosphorus (SMB P) in terrestrial ecosystems has limited our ability to incorporate the broad-scale soil 
microbial nutritional properties and the associated processes into biogeochemical models. Here, we synthesized a 
global dataset including 3801 observations for SMB C, 3154 observations of SMB N, and 2429 observations of 
SMB P in the top 0–30 cm soil depth. Based on this comprehensive global dataset, we generated quantitative and 
spatially explicit maps of SMB C, N, and P across terrestrial ecosystems using a random forest approach. We also 
quantified the relative importance of multiple environmental variables in predicting the spatial variation of SMB 
C, N, and P concentrations and then made further predictions at a global scale. Soil organic carbon (SOC) was the 
most important factor in predicting SMB C, N, and P at a global scale. At the global scale, the storage of SMB C, N, 
and P were estimated to be 23.13 Pg C, 3.93 Pg N and 2.16 Pg P in the top 0–30 cm soil surface, respectively. Our 
global maps of SMB C, N, and P presented here can be used to constraint Earth system models, and provide the 
first step forward to predict the roles of soil microbial nutrients in terrestrial nutrient cycling.   

1. Introduction 

Carbon (C), nitrogen (N), and phosphorus (P) are generally regarded 
as the most important elements in terrestrial ecosystems because their 
interactions play key roles in global biogeochemical cycling and 
ecosystem function (Marschner, 2012). Soil microbes, as the main de-
composers within terrestrial ecosystems, perform major roles in driving 
and regulating terrestrial ecosystem processes (Bardgett and van der 
Putten, 2014) and important nutrient cycling, such as soil C sequestra-
tion (Mooshammer et al., 2014; Spohn, 2016), soil organic matter 
decomposition (Heuck et al., 2015), soil N mineralization (Li et al., 
2019a), and nutrient recycling (Bardgett et al., 2008; Handa et al., 2014) 

as well as soil formation (Rillig and Mummey, 2006), and then affect the 
pattern and dynamics of ecosystem productivity (van der Heijden et al., 
2008). Soil microbial biomass carbon (SMB C), nitrogen (SMB N) and 
phosphorus (SMB P) are crucial elemental components of the soil mi-
crobial biomass (Singh and Gupta, 2018; Chen et al., 2021). Given the 
spatial heterogeneity of SMB C, N, and P across major biomes, the 
knowledge of spatial distribution of SMB C, N, and P is important for 
global nutrient cycling (Martiny et al., 2006). In addition, due to the 
important roles of soil microbes in plant-soil-microbe systems and soil 
microbial biomass as a major reservoir of soil available C, N and P, 
spatially-explicit information about SMB C, N, and P at a global scale 
will improve our understanding of nutrient cycling and terrestrial 
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ecosystem dynamics, particularly in the contexts of global environ-
mental changes. Yet to date, we still lack a quantitative and spatially 
explicit understanding of SMB C, N, and P that could lay the foundation 
work in predicting future changes in terrestrial nutrient cycling. 

It is generally assumed that abiotic factors, such as climate and soil 
chemical properties, play important if not the most important roles in 
regulating SMB C, N, and P at a global scale (Xu et al., 2013; Li et al., 
2014). For example, Xu et al. (2013) proposed that climate variables 
(mean annual temperature, MAT; mean annual precipitation, MAP) 
regulated SMB C and N, whereas Li et al. (2014) reported that soil 
chemical properties (e.g. soil N and P contents, and soil pH) explained 
most of the variation in SMB N and P in global forest ecosystems. The 
relative importance of climatic and soil chemical properties in deter-
mining SMB C, N, and P remain unresolved at a global scale. In addition, 
a myriad of different methods have been used to determine soil micro-
bial biomass, which could cause uncertainty (Joergensen et al., 2011) 
regarding the evaluation of the variation in SMB C, N, and P at a global 
scale (Cleveland and Liptzin, 2007; Hartman and Richardson, 2013; Xu 
et al., 2013). 

In addition to the effects of climate and soil chemical properties, soil 
physical properties (e.g., soil order and texture) can also influence 
nutrient availability and water-holding capacity (de Vries et al., 2012; 
Chen et al., 2016), and therefore drive changes in SMB C, N, and P 
(Griffiths et al., 2011; Delgado-Baquerizo et al., 2013). For instance, soil 
organic carbon and structure regulated SMB C across the arid and semi- 
arid grasslands in northern China (Hu et al., 2014). Moreover, soil depth 
and land cover type are also important factors controlling SMB C, N, and 
P cycling processes (Fanin et al., 2013; Bahram et al., 2018). For 
example, shifts in soil microbial C:N:P stoichiometry are related to 
changes in soil depth and aboveground biomass at regional scales (Liu 
et al., 2020). Nonetheless, the relative importance of climatic, plant, or 
soil chemical and physical properties controlling spatial distribution of 
SMB C, N, and P at a global scale remains relatively unclear. Most 
importantly, yet to date, we still lack a quantitative and spatially explicit 
understanding of SMB P at a global scale due to the limited data. 
Collectively, an improved global understanding of the determinants of 
SMB C, N, and P would offer a unique opportunity to benchmark and 
improve C, N, and P dynamics in terrestrial ecosystems. To address these 
knowledge gaps, we compiled a comprehensive global dataset of chlo-
roform fumigation-extraction (CFE) derived SMB C, N, and P concen-
trations from surface soil horizons (at a depth of 0–30 cm). The CFE 
protocol was used because it is the most frequently used protocol across 
a wide range of soil types and provides an index of total soil microbial 
biomass which contains all bacteria and fungi (Fierer et al., 2009). 

The objectives of the present study were to generate quantitative and 
spatially explicit maps of SMB C, N, and P at a global scale using a 
machine learning algorithm approach and quantify the relative impor-
tance of climate, plant, and soil variables for predicting the spatial 
variation of SMB C, N, and P in the top 0–30 cm soil depth. We answer 
the following questions: (1) Which factors are the most important for 
predicting the spatial variation of SMB C, N, and P in the top 0–30 cm 
soil depth? (2) How much SMB C, N, and P is stored in the top 0–30 cm of 
soil for major biomes and globally? 

2. Materials and methods 

2.1. Data compilation 

A large dataset of SMB C, N, and P was compiled from a broad range 
of published literature by searching for ‘soil microbial biomass’ in 
Google Scholar (http://scholar.google.com), Web of Science 
(http://apps.webofknowledge.com), and the China National Knowledge 
Infrastructure Database (http://cnki.net) from the earliest publication. 
To avoid bias in selecting publications, the criteria for selecting eligible 
data were: (1) at least one of SMB C, N, or P concentrations must be 
reported; (2) the data reported for SMB C, N, and P concentrations were 

measured using the chloroform fumigation-extraction (CFE) technique 
(Vance et al., 1987). The CFE technique quantifies SMB C, N and P 
concentrations were calculated as the difference between non-fumigated 
and fumigated extracts using a conversion factors of 0.45, 0.54, and 0.4, 
respectively (Joergensen and Mueller, 1996) (Brookes et al., 1982); (3) 
the data had to come from control plots if the reported results are based 
on manipulation experiments; (4) the data had to come from the top 
0–30 cm soil depth (data from unspecified soil depths were excluded). 
We also included data provided by Wang et al. (2021) and by Xu et al. 
(2013) that met these criteria. 

Site descriptors were also recorded in the dataset from the original 
articles, including geographic location (i.e., latitude and longitude), 
climate variables (i.e., mean annual temperature MAT, mean annual 
precipitation MAP), soil physical attributes (i.e., sand and clay content, 
and soil order), soil chemical properties (i.e., soil pH, soil organic car-
bon; SOC, soil total N and P), and land cover type. The original data were 
obtained from the text, tables and appendices of the original publica-
tions, or extracted from figures using GetData Graph Digitizer (version 
2.22). When the geographical coordinates and climatic factors were 
unavailable in the original articles, we sourced our data from the Global 
Gazetteer Version 2.2 (http://www.fallingrain.com/world/index.html) 
and the WorldClim global climatic database (http://worldclim.org/bio 
clim) with a grid precision of 30 × 30 arc sec according to geographic 
location. Missing soil physical–chemical properties and soil-types were 
evaluated using the global harmonized database with high resolution of 
30 × 30 arc sec (http://openlandmap.org) (Batjes, 2016). Land cover 
type was determined from the database of socioeconomic data and ap-
plications with a resolution of 30 × 30 arc sec (https://sedac.ciesin. 
columbia.edu). To standardize the data, we converted all SMB C, N, 
and P concentrations values into units of mg kg− 1 dry soil. A total of 789 
distinct sites worldwide from 279 published studies composed the 
dataset (Fig. 1; A list of data sources is provided in the supplementary 
material). The observations came from nine major terrestrial biomes, 
including cropland, boreal forest, tropical/subtropical forest, temperate 
forest, shrubland, grassland, desert, tundra and wetland. 

2.2. Data analyses 

The total dataset of SMB C (n = 3801), N (n = 3154) and P (n = 2429) 
was used to examine the environmental controls and geospatial distri-
bution of these essential elements in soil microbes, and to further 
generate the corresponding spatially explicit global maps. The machine- 
learning algorithm Random Forest, an ensemble regression tree 
approach (Breiman, 2001), was used to extrapolate the relationships of 
the SMB C, N, and P with the 10 predictors across the globe, and to 
generate spatially explicit, quantitative maps at a global scale. The 10 
predictors were suggested to be important by previous studies (Xu et al., 
2013; Li et al., 2014; Chen et al., 2016; Zechmeister-Boltenstern et al., 
2015; Liu et al., 2020) and were derived from the original studies or 
global map layers that include soil physical–chemical properties (i.e., 
soil clay and sand content, SOC, soil pH, soil total N and P) and soil type 
(soil order), climate variables (i.e., MAT, MAP), and biotic factors (i.e., 
vegetation land cover). The strength of prediction was evaluated using 
5-fold cross validation which was performed using the R package caret 
(v. 6.0–86) (Kuhn, 2020). In this method, the whole dataset was 
randomly classified into five folds, each of which contained 20% of the 
data. One fold was used for validation data, whereas the other four folds 
were used for training data. Then another fold of data was used for 
validation, and the remaining four were used for training, generating 
five validation trials (He et al., 2021). The final models were used to 
generate the global maps at 0.5◦ resolution. To predict the uncertainty of 
each map cell, we used the bootstrap samples with quantile regression 
forests technique to map the conditional standard deviations (SDs) 
(Meinshausen, 2006). SDs were calculated to represent the uncertainty 
using the quantregForest function in the quantregForest R package 
(Meinshausen, 2017). 
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To examine the 10 potential predictors hypothesized to control SMB 
C, N, and P at a global scale, machine learning algorithms (random 
forest) were then used to determine the relative importance of each 
variable (Du et al., 2020). Mean decrease in accuracy (% IncMSE) was 
used as a criterion of success, and the variables with greater values of % 
IncMSE were identified as important in influencing SMB C, N, and P. 
Pearson correlation coefficients were calculated for all pairwise com-
binations of variables to evaluate their interrelationship structure. We 

calculate SMB C, N, and P storage in 0–30 cm based on our predicted 
SMB C, N, and P concentration maps, a global soil density map (0–30 cm 
depth), and a global terrestrial surface area map (antarctica excluded) 
(Hengl et al., 2017). The global terrestrial surface area map (including 
areas of different land cover) is generated by computing the approxi-
mate surface area of cells (0.5◦×0.5◦ in our study) in a longitude/lati-
tude projection, which was carried out using the area function in the 
raster R package (Hijmans et al., 2021). Statistical analyses were 

Fig. 1. Global distributions of sampling sites. (A) soil microbial biomass carbon (SMB C), (B) soil microbial biomass nitrogen (SMB N), and (C) soil microbial biomass 
phosphorus (SMB P). 
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performed and maps were drawn using R 4.0.2 (R Core Team, 2018). 

3. Results 

The mean SMB C, N, and P concentrations in the global dataset were 
693.0 mg kg− 1, 89.5 mg kg− 1, and 35.5 mg kg− 1, respectively (Table 1). 
There was 10-fold variation in mean SMB C, N, and P concentrations 
across biomes (Table 1). At biome level, tundra had the highest SMB C, 
N, and P concentrations, whereas deserts had the lowest SMB C, N, and P 
concentrations (Table 1). Among the forest types, boreal forest has the 
highest, whereas tropical/subtropical forest has the lowest SMB C, N, 
and P concentrations (Table 1). 

Clear latitudinal trends were observed at the global scale, with SMB 
C, N, and P increasing from low- to high-latitude regions (Fig. 2). Ma-
chine learning algorithms (random forest) demonstrated good pre-
dictions regarding SMB C (r2 = 0.77 in 5-fold cross validation; 
Supplementary Fig. S1A), N (r2 = 0.71 in 5-fold cross validation; Sup-
plementary Fig. S1B), and P concentrations (r2 = 0.73 in 5-fold cross 
validation; Supplementary Fig. S1C) with high predictive accuracy, and 
showed their standard deviation maps (Fig. S2). The random forest 
model revealed that SOC was the most important factor affecting SMB C, 
N, and P concentrations at a global scale (Fig. 3). Partial regression 
analysis showed that SMB C, N, and P increased significantly with SOC, 
soil total N and P, MAP, MAT, and soil clay content, but decreased 
significantly with MAP, soil pH, and soil sand content (Fig. S3). 

Based on the relationships of SMB C, N, and P and environmental 
factors, the global storage of SMB C, N, and P were estimated as 23.13 Pg 
, 3.93 Pg , and 2.16 Pg, respectively, in the top 0–30 cm soil depth. The 
storage of SMB C, N, and P varied among major biomes (Table 2). For 
example, SMB C and N ranged from 0.58 Pg C and 0.13 Pg N for 
shrubland to 4.97 Pg C and 0.86 Pg N for boreal forest, respectively, 
whereas SMB P ranged from 0.03 Pg for wetland to 0.57 Pg for boreal 
forest. 

4. Discussion 

Previous studies of SMB C, N, and P have provided important, but 
incomplete insights (especially due to limited data for soil microbial 
biomass P) into the importance of soil microbes in biogeochemical cy-
cles at a global scale. To our knowledge, this study provides quantita-
tively and spatially explicit distribution maps and estimates the global 
storage of SMB C, N, and P in the top 0–30 cm soil depth. These high- 
resolution maps and numerical estimates provide insight into biogeo-
chemical and ecosystem models under current and future climate 
scenarios. 

4.1. Variation in SMB C, N, and P concentrations across biomes 

The data presented here provide information regarding SMB C, N, 

and P concentrations in the top 0–30 cm soil depth at both the biome and 
global levels. Compare with previous studies, the means of SMB C, N, 
and P concentrations were similar to those reported by Wang et al. 
(2021). These mean values, however, were lower than those reported by 
Xu et al. (2013). The discrepancies may be attributed to the differences 
in the soil depths sampled and the methods used to measure the soil 
microbial biomass. Specifically, the data presented here were obtained 
from a specific range of surface soil horizons (depths of 0–30 cm), 
whereas the dataset used by Xu et al. (2013) included a significant 
proportion of data extracted from unspecified soil depth or 30–100 cm 
soil profiles. Furthermore, SMB C, N, and P concentrations were esti-
mated using a single protocol (i.e., chloroform fumigation-extraction 
method; Vance et al., 1987) in our study, whereas the data emerging 
from seven different methods for measuring these variables were 
incorporated in the dataset of Xu et al. (2013). These differences pre-
sumably resulted in the lower SMB C and N concentrations reported in 
this study. 

SMB C, N, and P concentrations varied significantly across biomes 
(Table 1). This result is identical to that reported by Xu et al. (2013). 
However, the SMB C, N, and P concentrations in boreal forest, shrub-
land, cropland, and desert are higher, whereas grassland and tropical/ 
subtropical forest are lower than that reported by Xu et al. (2013). These 
large discrepancies between our study and Xu et al. (2013) are largely 
because previous summaries are based on limited site observations in 
different biomes, whereas our estimates are based on a larger and more 
complete global dataset covering all major biomes. Among all major 
biomes, the highest SMB C, N, and P concentrations are observed in 
tundra, supporting the notion that soil microbes at high latitudes with 
low temperatures may increase C, N, and P content to compensate for 
their lower metabolic activity (Reich and Oleksyn, 2004; Li et al., 2014). 
Deserts are observed to have the lowest SMB C, N, and P concentrations, 
suggesting that the lower soil organic carbon in deserts is correlated 
with lower soil microbial biomass C, N, and P concentrations (Batjes, 
1996; Fierer et al., 2009). 

4.2. Global mapping of SMB C, N, and P 

At the global scale, SMB C, N, and P exhibited significant latitudinal 
trends (i.e., these three nutrients increase in colder, higher latitudes) 
(Fig. 2). These trends are consistent with global patterns reported by 
other relevant studies (Xu et al., 2013; Li et al., 2014; Crowther et al., 
2019), and with the temperature-biogeochemistry hypothesis and/or 
the latitudinal/temperature compensation hypothesis (Levinton, 1983; 
Reich and Oleksyn, 2004), stating that offset reduced rates of 
biochemical reactions caused by the diminished efficiency of N-rich 
enzymes and P-rich RNA at low temperatures. 

Our analyses show that SOC is the most important factor to affect 
SMB C, N, and P in the top 0–30 cm soil depth at a global scale. This 
finding is inconsistent with previous studies, in which climate and soil 

Table 1 
Summary of total soil organic carbon, nitrogen, and phosphorus, and soil microbial biomass C, N, and P concentrations in the top 0–30 cm soil depth layer at the global 
scale and across nine major biomes.  

Biomes SOC (g kg− 1) STN (g kg− 1) STP (g kg− 1) SMB C (mg kg− 1) SMB N (mg kg− 1) SMB P (mg kg− 1) 

Boreal Forest 107.7c (18.3–501.3) 5.1b (0.1–222.4) 0.7b (0.5–1.4) 2062.8b (37.0–7985.0) 234.3b (4.0–996.0) 174.3a (30.0–329.0) 
Cropland 27.3e (0.6–496.0) 2.2c (0.1–27.0) 0.6b (0.0–2.2) 716.2c (19.0–5623.0) 70.9e (1.5–459.0) 30.9c (0.9–226.0) 
Desert 50.9d (0.3–272.4) 0.3d (0.2–1.0) 0.6b (0.1–0.9) 172.3e (0.5–979.1) 57.1f (0.3–260.0) 20.9c (14.8–25.9) 
Grassland 31.1e (0.6–447.8) 2.8c (0.1–24.9) 0.6b (0.0–2.2) 489.7d (8.7–3412.0) 58.1f (0.4–499.9) 24.0c (0.2–239.0) 
Shrubland 55.9d (1.0–523.0) 2.6c (0.1–24.9) 0.6b (0.0–1.1) 799.0c (56.0–6948.0) 157.7c (5.0–541.2) 61.4b (0.7–168.4) 
Temperate Forest 46.6d (1.7–227.0) 2.9c (0.2–19.5) 0.6b (0.0–2.0) 707.2c (4.3–9285.0) 109.3d (0.4–732.1) 27.8c (0.5–271.0) 
Tropical/Subtropical Forest 53.2d (2.6–329.0) 3.7c (0.2–22.0) 0.6b (0.1–1.6) 400.5d (8.0–3151.0) 68.4e (3.4–578.8) 25.6c (0.6–368.6) 
Tundra 187.9a (10.1–584.0) 9.4a (1.1–23.2) 0.9a (0.1–2.1) 3407.6a (130.0–9390.0) 443.8a (15.0–960.0) 181.5a (2.0–390.0) 
Wetland 149.5b (14.6–338.9) 9.0a (0.2–18.9) 0.9a (0.1–1.8) 1782.1b (115.0–9000.0) 137.0c (9.0–897.0) 71.0b (0.6–345.0) 
Global 37.8e (0.3–584.0) 2.6c (0.2–27.0) 0.6b (0.0–2.2) 693.0c (185.0–812.0) 89.5e (27.3–104.0) 35.5c (10.5–39.7) 

Values are means with minimum and maximum value intervals in parentheses. Different letters indicate significant differences at the 0.05 level. SOC, Soil organic 
carbon; STN, Soil total nitrogen; STP, Soil total phosphorus; SMB C, soil microbial biomass C; SMB N, soil microbial biomass N; SMB P soil microbial biomass P. 
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chemical properties are reported to be the primary ‘drivers’ (Xu et al., 
2013; Li et al., 2014). As an important substrate and a product of mi-
crobial activity for soil microbes (Paul, 2016; Tashi et al., 2016; He et al., 
2019), it is well known that soils with high organic matter usually 
contain a higher microbial biomass (Traoré et al., 2016; Camenzind 
et al., 2018). Microbial necromass C can make up more than half of SOC 
(Liang et al., 2019), and in cold regions, low metabolic activity of het-
erotrophic organisms induces the accumulation of large organic matter 
stocks (van den Hoogen et al., 2019). Thus, the greatest accumulation of 

SOC occurs in Arctic and sub-Arctic soils (Crowther et al., 2019). 
Moreover, an increase in the SOC stock in mineral-rich soils (which have 
a significant effect on global C cycle) requires the sequestration of large 
amounts of P (Minasny et al., 2017). For example, it is estimated that the 
storage of 1000 kg C in the topsoil of temperate and tropical cropland 
would require the sequestration of 8.4 and 4.1 kg P, respectively (Spohn, 
2020). Hence, compared to other environmental variables, it seems 
reasonable to suggest that SOC is a better variable in predicting the 
spatial variation of SMB C, N, and P at a global scale. In addition, our 

Fig. 2. Global maps of soil microbial biomass carbon (A), nitrogen (B), and phosphorus (C) at the 30 arc sec (approximately 1 km) pixel scale using the 
pooled dataset. 
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Fig. 3. Potential predictors of soil microbial biomass carbon (A), nitrogen (B), and phosphorus (C). In the left panel, the relative importance of climate variables, soil 
properties and land cover on SMB C, N and P was quantified by the partial regression with the lncMSE. In the right panel, the relationships of soil organic carbon 
(SOC) with the SMB C, N and P were determined by the partial regression. Data were log-transformed before the statistical analyses. Climate variables include mean 
annual temperature (MAT) and mean annual precipitation (MAP). Soil properties include SOC, soil total nitrogen (TN), soil total phosphorus (TP), soil sand and clay 
content, soil pH and soil order. 
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data indicate that SMB C, N, and P are highly associated with one 
another (Fig. 4), which indirectly supports the conclusion that SOC 
provides a surrogate measure of not only SMB C, but also SMB N and P at 
a global scale. Interestingly, our results revealed that land cover is 
another important factor in predicting SMB N and P (Fig. 3). One pos-
sibility is that vegetation structure and composition exert a control on 
SMB N and P through immobilization and mineralization of both N and P 
from plant residues (Kara et al., 2008; Aponte et al., 2010). 

Overall, these accurate spatially explicit global maps of SMB C, N, 
and P can help improve understanding of the Earth system dynamics by 
facilitating fundamental studies on carbon storage, nutrient acquisition 
and land–atmosphere interaction. For example, the close correlation 
between SOC and SMB C, N, and P at a global scale could make more 
accurate predictions of carbon dynamics and facilitate the improvement 
in prediction of large scale terrestrial carbon budget. 

4.3. The storage of SMB C, N, and P at the global and major biome level 

The global storage of SMB C, N, and P in the top 0–30 cm soil depth 
were estimated as 23.13 Pg C, 3.93 Pg N and 2.16 Pg P, respectively. The 
SMB C and N were higher than those of Xu et al. (2013) (i.e., 16.7 Pg C 
and 2.6 Pg N). This difference may be attributed to the smaller sample 
size used by Xu et al. (2013), whereas our current estimates are based on 
a larger and more comprehensive dataset. At the biome level, boreal 
forest stored the highest SMB C, N, and P (i.e., 4.97 Pg C and 0.86 Pg N). 
These values are consistent with those reported by Xu et al. (2013), 
indicating that boreal forest ecosystems are the largest reservoirs of SMB 

C and N. Shrubland appears to be the lowest reservoirs of SMB C (0.58 Pg 
C) and N (0.13 Pg N), whereas wetlands contain the lowest SMB P (0.03 
Pg P), most likely because of their small areas across all the biomes 
(Table 2). These results are similar to those reported by Xu et al. (2013). 
Previous study has proved that SMB C, N, and P concentrations 
decreased exponentially with soil depth as a result of a favourable soil 
microrhizosphere system created by root systems transport oxygen to 
soil matrix (Chapin et al., 2002; Xu et al., 2013). However, due to the 
limited data, our maps do not estimate the storage of SMB C, N, and P in 
the 30–100 cm soil depth, but an outcome on its aggregated effects. We 
therefore suggest that further studies on vertical distribution of SMB C, 
N, and P at a global scale are valuable. 

4.4. Limitations and uncertainties 

Some limitations and uncertainties must be recognized when inter-
preting our results. First, approximately 75% of the SMB C, N, and P 
concentrations in our dataset were extracted from croplands, grasslands, 
and forest ecosystems. This disproportionate number of data points from 
different biomes likely biases global summaries and spatial extrapola-
tions. Second, our study presents a spatial analysis of SMB C, N, and P 
that neglect the effects of temporal variation that can regulate the spatial 
patterns at the global level (e.g., seasonal changes in concentrations). 
For example, data indicate that seasonal variations can shift SMB C, N, 
and P concentrations in forest ecosystems (Li et al., 2019b). This pos-
sibility indicates that the sampling and measurement time for the SMB C, 
N, and P data should be reported. Future studies on temporal dynamics 
of SMB C, N, and P are needed. Third, environmental changes (e.g. 
warming, N deposition) could lead to variations in SMB C, N, and P at a 
global scale (Guo et al., 2018; Xu et al., 2020). Therefore, the underlying 
mechanisms governing the dynamics of SMB C, N, and P under changing 
environments merits need to be further investigated. 

5. Conclusions 

Our results reported here provide detailed information regarding 
SMB C, N, and P concentrations in the top 0–30 cm soil depth at a global 
level and across contrasting biomes. By constructing a database of SMB 
C, N, and P globally, we generated the quantitative and spatially explicit 
maps in the top soil 0–30 cm depth layer in the global terrestrial eco-
systems. The SMB C, N, and P showed clear latitudinal patterns at a 
global scale. The global storage of SMB C, N, and P are estimated to be 
23.13 Pg C, 3.93 Pg N and 2.16 Pg P in the top 0–30 cm soil depth. In 
addition, we also quantified the relative importance of multiple vari-
ables for predicting the spatial variation of SMB C, N, and P. We found 

Table 2 
Summary of the storage of soil microbial biomass C, N, and P in the top 0–30 cm 
soil depth layer at the global scale and across nine major biomes.  

Major biomes SMB C (Pg 
C) 

SMB N (Pg 
N) 

SMB P (Pg 
P) 

Area (million 
km2) 

Boreal forest  4.97  0.86  0.57  10.86 
Tropical/Subtropical 

Forest  
3.55  0.50  0.31  20.03 

Temperate forest  3.23  0.69  0.21  10.85 
Shrubland  0.58  0.13  0.16  9.77 
Grassland  3.46  0.47  0.31  18.21 
Cropland  2.66  0.40  0.19  25.27 
Desert  1.48  0.45  0.21  14.88 
Wetland  1.21  0.17  0.03  7.18 
Tundra  1.99  0.26  0.07  8.82 
Global  23.13  3.93  2.16  125.87 

SMB C, soil microbial biomass C; SMB N, soil microbial biomass N; SMB P soil 
microbial biomass P. 
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that SOC plays a dominant role in predicting SMB C, N, and P at a global 
scale. Our improved global maps of SMB C, N, and P will be future at-
tempts to model the effects of SMB C, N, and P on nutrient cycling and 
ecosystem functioning, and could provide valuable insights into un-
derstanding ecosystem dynamics associated with a changing 
environment. 
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